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Course content and schedule

Dates Lectures Lecturers Mean

20.02
Introduction

D. Briand / G. Villanueva Live
Transducers review: pre-recorded lectures

27.02
Sensors part I

D. Briand Live
Exercices

05.03
Sensors part II

D. Briand Live
Industrial seminar #1

12.03
Students presentations D. Briand / G. Villanueva

Live

19.03
Actuators and Optical MEMS

D. Briand Live
Industrial seminar #2

26.03
Acoustic and Ultrasonic MEMS

G. Villanueva Live
Industrial seminar #3

09.04
Acoustic and Ultrasonic MEMS

G. Villanueva Live

16.04
RF-MEMS
NEMS

G. Villanueva Live

23.04
Interactive session

D. Briand / G. Villanueva Live

30.04
Thermal and gas sensors

D. Briand Live
Industrial seminar #4

07.05
Packaging

D. Briand Live

14.05
Packaging

D. Briand Live
Industrial seminar #5

21.05
PowerMEMS

D. Briand Live

28.05
Quiz + oral exam instructions 

All Live
Evaluation of the course
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• MEMS oscillators (active)



MICRO-534  /  Advanced MEMS / MEMS Resonators 4

What is a Resonator?

• Wikipedia says…

System that tends to oscillate with greater amplitude at some frequencies than at others

…and Wikipedia is usually right.
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• 𝑄 - Quality factor

– Measure of how good/bad a resonator is

– 𝑸 = 𝟐𝝅
𝑬𝒔𝒕𝒐𝒓𝒆𝒅

𝑬𝒍𝒐𝒔𝒕
; 𝑸 =

𝝎𝒓

𝑭𝑾𝑯𝑴
; 𝑸 =

𝑺𝟐𝟏 𝝎𝒓

𝑺𝟐𝟏 𝝎=𝟎

– Establishes level of interaction with the “outside”
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Quality factor – high or low?

• It depends on the application

• Trade-off

– Less influence from external noise

– Time required to settle down the transients

• Every mechanical structure has resonances

• If your application “resonates” – then better as high as possible
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Difference between resonator and other systems

Accelerometer (DC)

𝒂 𝑭𝑴 𝜟𝒙𝒌 𝜟𝑽𝑪

MEMS Resonator

𝑷𝒊 𝒙 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝑷𝒐𝑨𝒄𝒕𝒖𝒂𝒕𝒊𝒐𝒏
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MEMS resonators applications

RF Filter

Oscillator

LNA
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MEMS resonators applications

RF Filter Oscillator

Resonant sensor

LNA

Δ𝜔𝑟

Event

What kind of event could it be?
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Why MEMS resonators?
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TYPES OF MEMS RESONATORS
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• Bending of mechanical structures is involved

• 1D: cantilevers (C-F), beams (C-C), free-free (F-F); 2D: membranes (CCCC), plates (CFFF)

• Equation of motion is a 4th order differential equation

– Solution is a combination of trigonometric and hyperbolic functions

• Typical frequencies: 10kHz – 100MHz

• Applications: Low frequency oscillators, sensors

• Advantages: 

– Intuitive and clear understanding of motion

– Low mass – preferred for sensing

• Disadvantages: gas or liquid damping is very important

Types of MEMS Resonators Flexural

𝒇 ∝
𝑬

𝝆

𝒕

𝑳𝟐
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• Motion based on torsion, torque-based movement

• Usually paddle-like structures

• Equation of motion is a 2nd order differential equation

– Solution is a combination of trigonometric functions

• Typical frequencies: 10kHz – 10MHz

• Applications: Low frequency oscillators, sensors

• Advantages: 

– Intuitive and clear understanding of motion

– Low interaction with substrate (thin supporting rods)

• Disadvantages: very fragile and costly to fabricate (very thin rods)

Types of MEMS Resonators Torsional

𝒇 ∝
𝑮

𝝆

𝒕𝟑

𝑳𝒓𝑳𝒑𝑾𝒑
𝟑
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• Acoustic waves constructive interaction

• Movement is 3D (due to Poison’s ratio) – Reduced to 1D if 𝒘 > 𝑡

• Equation of motion is a 2nd order differential equation – wave equation

– Solution is a trigonometric function, Frequencies are multiples

• Typical frequencies: 100MHz – 10GHz

• Applications: Filters, Oscillators

• Advantages: 

– High frequency, high Q

– Easy electromechanical modelling

• Disadvantages:

– Complicated design (to trim properties)

– One frequency per wafer

Types of MEMS Resonators Acoustic - Thickness

𝒇 ∝
𝑬

𝝆

𝒏

𝒕
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• Acoustic waves constructive interaction

• Movement is 3D (due to Poison’s ratio) – Reduced to 1D if 𝒘 > 𝒕

• Equation of motion is a 2nd order differential equation – wave equation

– Solution is a trigonometric function, Frequencies are multiples

• Typical frequencies: 100MHz – 10GHz

• Applications: Filters, Oscillators

• Advantages: 

– High frequency, high Q

– Easy electromechanical modelling

• Disadvantages:

– Complicated design (to trim properties)

– Even less intuitive than previous one

Types of MEMS Resonators Acoustic - Shear

𝒇 ∝
𝑮

𝝆

𝒏

𝒕
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• Acoustic waves constructive interaction

• Movement is 3D (due to Poison’s ratio) – Reduced to 1D if 𝒘 > 𝒕

• Equation of motion is a 2nd order differential equation – wave equation

– Solution is a trigonometric function, Frequencies are multiples

• Typical frequencies: 100MHz – 10GHz

• Applications: Filters, Oscillators

• Advantages: 

– Frequency defined by lithography, high frequency, high Q

– Easy electromechanical modelling

• Disadvantages:

– Complicated design (to trim properties)

Types of MEMS Resonators Acoustic - Lateral

𝒇 ∝
𝑬

𝝆

𝒏

𝒘
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Types of MEMS Resonators 

Type Frequency Example

Flexural 100 kHz – 100 MHz

Torsional 10 kHz – 10 MHz

Thickness

100 MHz – 10 GHzShear

Lateral

𝒇 ∝
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Damping/loss mechanisms?

• Viscous damping

– Displacement of gas or liquid molecules

– Pressure and mode-shape dependent

• Anchoring losses

– Radiation of energy to the substrate

– Minimized using phononic crystals (artificial mirror for acoustic energy)

• Material losses

– Surface states

– Volume losses

• Defects motion

• Thermo-elastic damping

• Akhiezer effect (electro-phonon dissipative coupling)

𝑸 = 𝟐𝝅
𝑬𝒔𝒕𝒐𝒓𝒆𝒅
𝑬𝒍𝒐𝒔𝒕
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Transduction in MEMS resonators

• Capacitive/Electrostatic

• Thermal

• Piezoresistive

• Piezoelectric

• Electrostrictive

– Polarizing a dielectric material – effectively turning it piezoelectric

MEMS Resonator

• Non dissipative

• Based on material property

• No need for external DC

• Good scaling with frequency
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Comparing resonators

• It’s difficult to compare “apples and oranges”

• Figures Of Merit (𝐹𝑂𝑀)

– Useful to get much information into a single parameter

• 𝑭𝑶𝑴𝟏 = 𝒇𝒓 · 𝑸
– Determines which resonator would work better as an oscillator

– It can be seen that there is kind-of a trade-off between 𝒇𝒓 and 𝑸

• 𝑭𝑶𝑴𝟐 = 𝒌𝒕
𝟐 · 𝑸

– 𝒌𝒕
𝟐 measures how much mechanical energy gets converted into electrical energy

– This 𝐹𝑂𝑀 determines which resonator would work better as a filter

– Piezoelectric resonators have the highest values
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Modelling resonators – 1-port

Resonator 
symbol

𝑹𝒎

𝑳𝒎

𝑪𝒎

𝑽𝒊 𝑽𝒐

𝑹 𝑳

𝑪

Electrical resonator

• Equivalent circuit

– Allows to reproduce mechanical resonator behavior with circuit simulation tools

• Historically, the first one to be developed was a 1-port model for Quartz crystals
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Modelling resonators – 1-port

Resonator 
symbol

𝑹𝒎

𝑳𝒎

𝑪𝒎

𝑹𝒐

𝑪𝒐

𝑹𝒔

• Equivalent circuit

– Allows to reproduce mechanical resonator behavior with circuit simulation tools

• Historically, the first one to be developed was a 1-port model for Quartz crystals

Parasitic
impedance
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Modelling resonators – 2-ports

• In order to reduce the effect of parasitics

– Two separate ports for excitation and readout

𝑹𝒎 𝑳𝒎 𝑪𝒎

𝑪𝒐 𝑪𝒐

𝑪𝒇
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MEMS RF-FILTERS
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What for? Communications front-ends

• Typically – Receivers work using heterodyne conversion

Antenna RF filter RF filter IF filterLNA LNA

VCO
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What for? Communications front-ends

• Typically – Receivers work using heterodyne conversion

Antenna RF filter RF filter IF filterLNA LNA

VCO
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What for? Communications front-ends

• Typically – Receivers work using heterodyne conversion

• It is necessary to do conversion down to IF because at RF, Qs are not good

• With RF-MEMS filters – Direct filtering is possible

Antenna RF filter RF filter IF filterLNA LNA

VCO
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• Ideal is a rectangular filter

• Filter design focus is mainly on

– Insertion loss (and ripple)

– Bandwidth

– Rejection

– Impedance

• Arrays of coupled resonators

– High Q = high rejection

– Separation = Bandwidth

• Coupling can be
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– Mechanical

– Acoustical
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Coupled resonators

• Basic idea

– 2 coupled resonators

– Symmetric and Anti-Symmetric motion

– New frequencies are defined by coupling factor
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Coupling for filters

• Electrical

– Ladder-like

• Mechanical

• Acoustic

– Series
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Filter design

• Depends on transduction and geometry

• Piezoelectric contour-mode resonators:

– Bandwidth

• Set by the electromechanical coupling coefficient

– Insertion Loss

• Set by 𝐹𝑂𝑀2 = 𝑘𝑡
2 · 𝑄

– Rejection

• Controlled by parasitics (𝐶𝑓)

– Impedance

• Termination capacitance, can be tuned

𝑩𝑾 ∼
𝟑

𝝅𝟐
𝒌𝒕
𝟐

𝑰𝑳 ∼ −𝟐𝟎 log
𝟒

𝟒 + Τ𝟑𝝅𝟐 𝒌𝒕
𝟐𝑸

𝑹𝒆𝒋𝒆𝒄𝒕 ∼ −𝟐𝟎 log
𝑪𝒇

𝑪𝒐
− 𝑰𝑳

𝑰𝑳 ∼
𝟏

𝒋𝝎𝒄𝑪𝒐
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MEMS OSCILLATORS
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What is an oscillator?

• Power output linearly depends 

on power input

• Requires a harmonic drive to 

have response

Passive/Resonator Active/Oscillator

LNA

• Outputs a harmonic signal by only 

applying DC power
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Basic implementation

• Idea

– Amplify 𝑃𝑜 enough to compensate resonator losses

– Feed it back to device with appropriate phase

– Barkhausen’s criteria

• Two simplest implementations

– Pierce & Colpitts oscillators

– 1 transistor, 2 capacitors – oscillator is running!

LNA



MICRO-534  /  Advanced MEMS / MEMS Resonators 37

Application I - Timekeeping

• Every watch has an oscillator inside – to keep track of time

• Oscillator’s beats are later translated into seconds (e.g. by a counter)

• For a precise watch – necessary a precise oscillator

• Precision is required in the long term (this is important)

1300’s

1600’s

1900’s
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Application I - Timekeeping

• What is the most precise clock?

– Atomic Clock – 30 fs error per day!!!!!

• Applications that require very high precision?

– Geolocation (GPS, Galileo…)

– Radar, LiDAR,…

• What is the most precise clock?

– Atomic Clock – 0.3 ns error per day!!!!!

• What application requires the highest precision
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Application II – Frequency source

• Communications

– Front-End/Receiver

• Oscillator signal is used to encode and decode signals

• Clean communication needs a precise oscillator

• Precision is important at very short timescales, < 1 ms

Antenna RF filter RF filter IF filterLNA LNA

VCO
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“Performance” Metrics

• Phase noise

• Temperature stability

• Acceleration stability

– Vibrations affect resonant frequency

– 𝒇 = 𝒇𝟎 𝟏 + 𝚪 · 𝒂

– 𝚪 ∼ 𝟏𝟎−𝟓𝐠−𝟏 for most MEMS devices

• Power consumption

– More autonomous devices

– Stand-by and clocking applications

• 32.768 kHz (= 𝟐𝟏𝟓𝐇𝐳)

• ∼ 𝟏 𝛍𝐖

• Size

– Smaller footprint = Cheaper 
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Temperature stability

• Frequency depends on temperature

– 𝒇 = 𝒇𝟎 𝟏 + 𝐓𝐂𝐅 · 𝚫𝐓

• 𝐓𝐂𝐅 can have different origins

– Change in Young’s modulus Τ𝝏𝑬 𝝏𝑻

– Change in volume/dimensions/density 𝜶 = Τ𝝏𝑳 𝝏𝑻

– Change in tension, surface stress, etc.

• Specification asks for ∼ 𝟏𝟎 𝐩𝐩𝐦 over the whole operational range (e.g. -30 – 70ºC)

– Τ𝝏𝑬 𝝏𝑻 ∼ ±𝟏𝟎 𝐩𝐩𝐦/𝐊!!!!!!!

• Solutions for compensation

– Quartz crystals get special cuts
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• Frequency depends on temperature
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• 𝐓𝐂𝐅 can have different origins

– Change in Young’s modulus Τ𝝏𝑬 𝝏𝑻

– Change in volume/dimensions/density 𝜶 = Τ𝝏𝑳 𝝏𝑻

– Change in tension, surface stress, etc.

• Specification asks for ∼ 𝟏𝟎 𝐩𝐩𝐦 over the whole operational range (e.g. -30 – 70ºC)

– Τ𝝏𝑬 𝝏𝑻 ∼ ±𝟏𝟎 𝐩𝐩𝐦/𝐊!!!!!!!

• Solutions for compensation

– Quartz crystals get special cuts

– MEMS – hybrid structures to balance

(using positive and negative Τ𝝏𝑬 𝝏𝑻)

• Not linear over wide T range
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Temperature stability

• Frequency depends on temperature

– 𝒇 = 𝒇𝟎 𝟏 + 𝐓𝐂𝐅 · 𝚫𝐓

• 𝐓𝐂𝐅 can have different origins

– Change in Young’s modulus Τ𝝏𝑬 𝝏𝑻

– Change in volume/dimensions/density 𝜶 = Τ𝝏𝑳 𝝏𝑻

– Change in tension, surface stress, etc.

• Specification asks for ∼ 𝟏𝟎 𝐩𝐩𝐦 over the whole operational range (e.g. -30 – 70ºC)

– Τ𝝏𝑬 𝝏𝑻 ∼ ±𝟏𝟎 𝐩𝐩𝐦/𝐊!!!!!!!

• Solutions for compensation

– Quartz crystals get special cuts

– MEMS – hybrid structures to balance

(using positive and negative Τ𝝏𝑬 𝝏𝑻)

• Not linear over wide T range

– Circuit compensation

• Use external circuit to detect T and correct the frequency

• Best results but causes Power consumption to increase

• Cheaper resonators
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Antenna RF filter RF filter IF filterLNA LNA

VCO

Phase Noise

• Communications

Ideal Frequency Source Real Frequency Source
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IDEAL
Local Oscillator 

(VCO)

P
o

w
e

r
Phase Noise

Ideal Frequency Source Real Frequency Source

𝝎

RF Filter

Signal

Interference

P
o

w
e

r

𝝎

P
o

w
e

r

𝝎

IF Filter

Interference
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Phase noise

• Phase noise determines the precision of the oscillator

– How accurate the generated frequency signal is

• It is measured in relative power to the total carrier power per Hz

–
𝒅𝑩𝒄

𝑯𝒛

• Leeson’s formula

– 𝑺𝝓 𝜹𝒇 = 𝟏𝟎 𝒍𝒐𝒈 𝑭
𝒌𝑩·𝑻·𝒇𝟎

𝑸·𝑬

𝟏

𝜹𝒇𝟐

– Incomplete, needs some modifications/additions
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𝟏/𝒇𝟑slope – from 𝟏/𝒇 electro/mechanical noise

𝟏/𝒇𝟐slope – from white electro/mechanical noise

White electrical noise from next stage
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Phase noise

• Phase noise determines the precision of the oscillator

– How accurate the generated frequency signal is

• It is measured in relative power to the total carrier power per Hz

–
𝒅𝑩𝒄

𝑯𝒛

• Leeson’s formula

– 𝑺𝝓 𝜹𝒇 = 𝟏𝟎 𝒍𝒐𝒈 𝑭
𝒌𝑩·𝑻·𝒇𝟎

𝑸·𝑬

𝟏

𝜹𝒇𝟐

– Incomplete, needs some modifications/additions

• Specifications/Requirements

– Depend on the carrier frequency

• High frequencies can be divided

• “Averages” 𝟏/𝒇𝟐 noise

– Great advantage of MEMS

• High 𝑭𝑶𝑴𝟏 = 𝒇𝒓 · 𝑸

• Phase noise is a very critical parameter because

it cannot be filtered out or adjusted externally
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Packaging – SiTime MEMS-First process
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Take home messages

• What is a Resonator? 

• Quality factor

– High or low?

– What determines if it’s high or low?

• Why MEMS resonators?

• Types of MEMS resonators

– Frequency dependence on dimensions

– Major application fields

• MEMS filters (passive)

– What are the most important parameters to optimize?

• MEMS oscillators (active)

– Why is phase noise important?

– Why is T stability important and how is it achieved?
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Lecture 6 – NEMS

Prof. Guillermo Villanueva

Advanced NEMS Lab (ANEMS)

EPFL-IGM NEMS

Advanced MEMS and Microsystems
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Contents

• Introduction

– NEMS examples

– NEMS definition(s)

– Why NEMS?

– NEMS Fabrication

– Main challenges
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NEMS examples
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NEMS definition

• NEMS tends to include “small MEMS”

• 1 possible definition

– 2 out of 3 dimensions ≤ 𝟏𝝁𝒎

• But then…

– What about graphene resonators?

– Or extremely thin MEMS?

• Another possible definition – “mesoscopic system”

– Referring to number of atoms in the mechanical device

• Golden Gate – ∼ 𝟏𝟎𝟑𝟒 atoms

• Trampoline – ∼ 𝟏𝟎𝟐𝟖 atoms

• Guitar string – ∼ 𝟏𝟎𝟐𝟑 atoms

• MEMS accelerometer – ∼ 𝟏𝟎𝟏𝟔 atoms

• Thin plate – ∼ 𝟏𝟎𝟏𝟐 atoms

• Si-based NEMS – ∼ 𝟏𝟎𝟏𝟎 atoms

• CNT – ∼ 𝟏𝟎𝟓 atoms

Macroscopic

Mesoscopic

Microscopic
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NEMS Fabrication

• Top-Down

– Pushing down the dimensions of standard µfab tools

– EBL, DUV, NIL, Stencil, FIB – To improve the resolution of UV Lithography

– Finer tuning of etching and deposition recipes

• Smooth edges

• Accurate thicknesses

– Easy integration and connection to “macro” world

– Very high cost to reduce dimensions

• Bottom-up

– Direct growth/synthesis of structures

– Highly based on chemical processes and reactions

• CVD, VLS method, Arc-discharge…

– Very cheap to produce millions of devices

– Very difficult to integrate and connect them (eventually using top-down techniques)
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NEMS examples
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Flexural & Torsional

• Intuitive and clear understanding of motion

• Very low masses

• Very low stiffness
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Why NEMS?

• Size

– Higher level of integration

– Very thin – good for stress-based sensing

• Mass

– Low thermal mass – good for T or heat sensing

– Low mass – good for detection of small mass landing

– Gravity/Acceleration can be mostly neglected

• Stiffness

– Low stiffness for a given frequency – good for Force sensing

• Frequency

– High frequency – less influence from vibrations & faster measurement
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• Fabrication

– Expensive (top-down)

– Difficult to contact (bottom-up)

– Imperfections become (relatively) too large

• Surface roughness

• Surface contaminants

• Material defects

• Grain boundaries

• Measurement

– Connection to “macro” world unavoidable

– Motional signal is “buried” in parasitics

– Very challenging to

• Match impedance

• Remove background

• Amplify signal

Challenges

• Low reproducibility

• Mechanical properties deteriorate

• Lower Q factors

9um 3um cut9um 3um cut
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STATIC DETECTION
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Static detection

• Mechanical system is not moving at first

• Event happens and mechanical device responds
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Static detection

• Mechanical system is not moving at first

• Event happens and mechanical device responds

• Temperature

– Thermal expansion gradient

• Gas sensor

– T based
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Static detection

• Mechanical system is not moving at first

• Event happens and mechanical device responds

• Temperature

– Thermal expansion gradient

• Gas sensor

– T based

– Surface stressed based

• Reference always needed
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DYNAMIC DETECTION
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Dynamic detection

• Mechanical system moving constantly

– At or close to the resonance frequency

• Event happens and mechanical device responds

– By changing its resonance frequency

• Frequency is the magnitude that is tracked

– PLL or oscillator

– Frequency counter
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Dynamic detection

• Mechanical system moving constantly

– At or close to the resonance frequency

• Event happens and mechanical device responds

– By changing its resonance frequency

• Frequency is the magnitude that is tracked

– PLL or oscillator

– Frequency counter

• Mass

– Deposition or removal of material

– Gases, mass spectrometry

• Material properties

• Temperature

• Stiffness

• Stress

Noise in frequency determines 
device performance
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Take home messages/Possible questions

• Why NEMS?

• Static & dynamic sensing

– How do they work in general?

– What are the main differences between NEMS and MEMS?

– Why is it interesting to go to NEMS?

– Examples

– What is most important?

– How to build a better sensor?
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